Final Exam

CMU Monte Carlo Methods and Applications / Fall 2024

due: December 13, 2024 at 5:00pm EST

Instructions.

The final is not collaborative. You must solve it on your own, without help from anyone else (in
person, or online). You may use whatever resources you can find online or in books; however, you may
not post on discussion boards. You are not permitted to use Al (e.g., ChatGPT or other LLMs) for this
exam, even though it was allowed for the midterm.

Instructors and TAs will be available on Discord to answer clarifying questions, but otherwise will
not provide any help. There will be no office hours during finals week.

There is no late day for the exam; it must be turned in before the due date. There are four questions;
each question is worth 25%. (Note that this distribution does not necessarily imply anything about the
relative difficulty of the questions.)

Please submit your written and coding solutions through Gradescope, exactly as you submit ordinary
homework. You must comment your code in order to receive full credit. Including comments also
helps us assign partial credit when the code has bugs, but the intent is correct.




1 Variance Reduction

Problem 1.1
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Suppose we want to estimate the integral of the function f(x) plotted above over the domain [0, 1],
using Monte Carlo integration. Assuming the cost of evaluating f(x) is negligible, rank the following
variance reduction strategies in terms of “least efficient” to “most efficient,” and give a rationale for
your ordering. Your ranking does not need to be a strict ordering, e.g., you can include ties if you think
two methods will exhibit very similar performance. (Note: your justifications are more important than
the specific ordering you pick—so please spell them out clearly!)

To ensure an apples-to-apples comparison, you should assume that all estimators use the same total
number of function evaluations N. For example, an antithetic sampler will have half as many terms as
a basic Monte Carlo estimator, since each term involves two function evaluations.

Antithetic sampling. Generate samples in pairs X;,1 — X;, where the X; are i.i.d. samples of the
uniform distribution on [0, 1]. Then use these samples to form a standard antithetic estimate.

Importance sampling. Prior to sampling, approximate p(x) as an average of two normal distributions
21(x), g2(x). (You do not need to account for the cost of precomputing this approximation.) To generate
each sample Xj, flip a fair coin to decide which of the two normal distributions to sample, and draw
a sample from the chosen distribution using a standard algorithm like Box-Muller. Then use these
samples X; in an importance sampled Monte Carlo estimator YN | £(X;)/(1¢1(X:) + 382(X;)).

Control variates. Letting g1, g2 be the same two Gaussians as before, integrate the function g7 (x) +
22(x) in closed form (easily done by hand), and subtract this value from a (basic) Monte Carlo estimate
of the integral of the function f(x) — (3¢1(x) + 1g2(x)) over [0,1]. In short, apply a standard control
variate estimator, using the sum of the two Gaussians as the approximating function.

Stratified Sampling. Break the domain into four strata of equal size, and apply a standard stratified
sampling estimator (i.e., draw one sample uniformly from within each stratum).

Note: you do not need to implement these methods! You just have to give a written argument for why you
chose your given ordering. Of course, if you want to implement them, to increase your confidence in your
answer, you're more than welcome to. But you don’t need to turn in any code, and won’t earn any additional
credit for implementation on this problem.



2 MCMC Sampling Meets MC Integration

We briefly mentioned in class that there is a strong law of large numbers for Markov chains

lim Y f00) = [ Fx)m(x) d M

where 77(x) is the stationary distribution of our Markov chain Xj, Xy, ..., and f is a function on () with finite
mean with respect to 77. Hence, we can use samples generated via an MCMC sampler (Metropolis-Hastings,
Langevin Monte Carlo, etc.) to estimate the integral on the right-hand side of Equation|[T} or equivalently, to
estimate the expected value E|[f] of f with respect to 7.

Problem 2.1 When we first studied Monte Carlo integration, using i.i.d. samples, we said we could estimate any
integral of the form

I:= /Qg(x) dx ()

using, e.g., the basic estimator Iy, or the importance-sampled estimator TK} But our MCMC-based
estimator TV MC seems to require that the integral have a special form, namely, |, o f(x)m(x)dx. Is this
just a superficial difference in the way we write the estimators? Or is it a fundamental limitation of
MCMC-based integration? More precisely, can you use the samples X;, X», ... generated by an MCMC
sampler to formulate an efficient estimator for a general integral I? If so, do it. If not, explain why it

can’t be done.

Problem 2.2 Suppose we let f(x) = g(x), and a target (unnormalized) distribution 7r(x) = 1 for MCMC, so that
f(x)m(x) = g(x). Under what condition on the problem data do we get a valid estimator for I? If this
condition is violated, what additional information would we need to formulate a valid estimator?

Problem 2.3 Now suppose we let f(x) = 1 and use a target (unnormalized) distribution 77(x) = g(x) for MCMC,
so that again f(x)7(x) = g(x). (This time you may also assume that g is nonnegative.) Under what
condition on the problem data do we get a valid estimator for I? If this condition is violated, what
additional information would we need to formulate a valid estimator?



3 Rejection Sampling vs. Uniform Proposals

Let 77(x) be a probability density on the domain Q := [0, 1]¢ (in some dimension d), and assume we know
the maximum value 7imax of 7t. Consider two possible strategies for generating samples of 7

* Rejection Sampling. Sample a candidate point ¥ uniformly from (), and sample a value u uniformly
from [0,1]. If u < 71(X)/ Ttmax, accept the sample X; otherwise, try again.

* Metropolis-Hastings with Uniform Proposals. Starting at any point x € (), sample a candidate point
% uniformly from (), and sample a value u uniformly from [0, 1]. If u < 71(%)/m(x), accept the sample
X; otherwise, remain at x.

Problem 3.1 You may have noticed that, when we use uniform proposals, Metropolis-Hastings looks extremely
similar to ordinary rejection sampling. Are they in fact the same algorithm? If so, explain why. If not,
describe how their behavior differs, giving some pros and cons.

Now let’s check if our analysis matches what we observe in practice, by implementing the two samplers.
In particular:

Problem 3.2 Implement a method sampleRejection(pi) that returns a single sample drawn from the distribu-
tion proportional to a given functio 7 : [0,1]2 — R, using rejection sampling.

Problem 3.3 Implement a method sampleMHUniform(pi,x) that returns a single sample drawn from the distri-
bution proportional to a given function 7 : [0,1]*> — R using Metropolis-Hastings with uniform
proposals. The argument X specifies the previous point in the chain.

Problem 3.4 Use your two methods to generate 1024 samples of the specific function pi(Xx) given below, and plot
the resulting samples in the unit square (making one plot for each method). The maximum of this
function is found at the center of the first Gaussian component, with a value of 77(p1) ~ 19.9094.

Problem 3.5 Use your two methods to estimate the center of mass c of the given distribution, i.e., the point

p:=Ex[x] = /0.1 Al(x,y)n(x,y) dxdy.

The exact location of this point is given by the weighted average of the Gaussian means, namely,
U= Z?{:l wini/ Z;Z’:l w; =~ (0.511,0.388). Plot the exact location of ¢ within the unit square, as well as
m = 16 estimates of c using each of your two methods. Each estimate should use 1024 samples. Make
it clear which dots correspond to which quantities (e.g., via colors and/or styling). Do your results
match your preconceptions about which of the two methods would work better?

!Note that in Python you can call a function passed into another function just as you would any other function. In this case, for
instance, you can call pi(x), where x=[x1,x2] is any point.



a0

import numpy as np
from scipy.stats import multivariate normal

# means

mul = np.array([0.25, 0.25])
mu2 = np.array([0.7, 0.7])
mu3 = np.array([0.75, 0.2])

# covariance matrices

Sigmal = 0.008 * np.array([[1, 0], [0, 111)

Sigma2 = 0.015 * np.array([[1, 0.9], [0.9, 1]1])

Sigma3 = 0.01 * np.array([[1, 0], [0, 0.25]])

# weights

wl = 1.0

w2 = 0.75

w3 = 0.5

# target density

def pi(x):
gl = multivariate normal.pdf(x, mean=mul, cov=Sigmal)
g2 = multivariate normal.pdf(x, mean=mu2, cov=Sigma2)
g3 = multivariate normal.pdf(x, mean=mu3, cov=Sigma3)

return wl*gl + w2*g2 + w3*g3



4 Options Pricing

In our overview of Monte Carlo integration, we briefly mentioned the use of Monte Carlo methods in
computational finance to predict the behavior of stock options. Here we're actually going to write some code
to make some basic predictions.

4.1 Background: Stocks and Stock Options

Stocks. When you buy a stock, you are essentially buying a small slice of a company: if the company does
well, the value of your stock increases; if the company does poorly, the stock value decreases. The game here
is to “buy low, sell high,” so that in the long term you make a proﬁﬂ For instance, if you bought 4000 shares
of Apple’s stock in 1997 for a price of $0.13/share, and sold it in 2001 for a price of $0.39/share, you would
make a profit of (4000 shares x $0.39/share) — (4000 shares x $0.13/share) = $1040, almost enough to buy
a new Mac. If instead you waited until today, it would be worth about $109 million USDE] Throughout we
will use S; to denote the price of a stock S at time .

Stock Options. A stock option is different from a stock: you are not purchasing the stock itself. Instead,
you are reserving the right to buy the stock at a later date, but with a pricing scheme agreed upon ahead
of time. The simplest variant are “European stock options,” where you pay a premium (usually a small
fraction of the stock price) for the option to purchase a given number of shares for an agreed-upon strike
price, at a fixed maturity date. For instance, you might pay a premium of $10 for the option to purchase
100 shares of a stock at a strike price of $5/share on the maturity date of December 31, 2025. If the stock
actually has a market price of, say, $6/share on that date, then you make a profit by exercising the option:
you can purchase an asset worth 100 shares x $6/share = $600 for only $500, which means your net profit is
(%600 — $500) — $10 = $90, i.e., the amount you make by being able to purchase stock “at a discount,” minus
the premium you originally paid for the option. If on the other hand the stock is worth less than $5 on that
date, you've effectively lost money: you paid a premium for the option to buy something at a loss (which
you don’t want to do!).

Asian Stock Options. An “Asian stock option,” or more specifically, an Asian call option, is almost exactly
like a European stock option, except that your profit is the difference between the strike price K agreed upon
at the purchase date t = 0, and the average price S over the interval [0, T] between the purchase date and the
maturity date t = T (rather than the market price St on the maturity date). Averaging the price over time
helps to smooth out volatility, making Asian options depend less critically on the exact maturity date. More

explicitly, if
R
is the average price of stock S over the interval 0 < t < T, the net profit made on an Asian call option is
max(0,S — K) — C,

where C is the premium paid for the option. (Taking a max with zero models the fact that you don’t want to
exercise an option that would lose money!)

2The reason companies sell stock in the first place, and don’t just keep all the profit for themselves, is that it's a way for them to raise
money for things they need to do—not much different from taking a loan from a bank, except they’re effectively getting a loan from a
large collection of investors.

3These dates and prices are, sadly, based on a true story.



4.2 Simulating the Stock Market

S&P 500 historical price (CY 2022-2023)
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So far we know “the rules of the trading game,” but don’t yet have a model that helps us predict how
stocks might actually behave. On fairly common model is to assume that the stock price S; exhibits geometric
Brownian motion (GBM), given by the stochastic differential equation

dSt = “l/lSt dt + (fStth, (3)

where the drift y models the expected rate of return (e.g., 4 = 0.03 represents a 3% growth rate), and the
volatility o models the standard deviation of returns (e.g., o = 0.15 represents a volatility of 15%, relative to the
current stock price). Notice that the deterministic part of this equation, dS; = uS; dt is just our usual linear
ODE for exponential growth (or decay). The additional term oS;dW; models proportional volatility: empirically,
more expensive stocks experience bigger jumps in price; hence, we model volatility as a percentage, rather
than an absolute amount.

Problem 4.1 Implement a method simulateGBM( SO, mu, sigma, T, n ) that simulates the geometric
Brownian motion in Equation (3| using the given initial value So and parameters y, o over the in-
terval [0, T| using n time steps. This method should return prices as a list of values [S1,...,Sn].
You can assume that the stock prices S are in US dollars, u is the annualized rate of return, o is the
annualized volatility, and that the time T is in years. Likewise, the values you return should be in US
dollars. For simplicity, assume that the calendar year (CY) is evenly divided into 250 trading days; do
not worry about the fact that trading does not occur on weekends, etc.

Problem 4.2 To get some sense of whether our model provides meaningful predictions, we can compare it to
historical data for the S&P SO(ﬂ Run your code for a starting price of So = $3824.14, annualized rate of
returrﬂ of u = 0.221, annualized volatility of ¢ = 0.130, and a duration of T = 1 year. Plot the result of
several runs of this code against the provided dataset GSPC. csv, which gives the daily price of S&P
500 for each trading day of 2023. Do you obtain a plausible-looking simulation of what could have
happened that year (even if the specific market fluctuations/prices don’t match the historical data)?

4.3 Establishing a Fair Price

Now that we can simulate stock prices over time, we can try to decide a fair price for an option we want to
sell (in particular, a fair premium C).

4The S&P 500 is an index of the biggest 500 stocks in the US, and is the most common such index used for long-term investments.
E.g., if you are saving for retirement, there’s a good chance you've already invested in the S&P 500!

5Note that we “cheated” here and matched # and ¢ to the historical data from 2023, to better focus our experiment on the validity of
the GBM model (rather than our ability to predict return rates!).


https://en.wikipedia.org/wiki/Index_fund

Problem 4.3

Problem 4.4

Implement a method estimatePremium(S0O, mu, sigma, T, n, m, K) that uses m Monte
Carlo samples to establish a fair premium C for an Asian call option with the same parameters
as simulateGBM(), plus a fixed strike price of K. In particular, you can establish a fair price by setting
the premium C equal to the expected payout E[max(0,S — K)], since the net profit is then zero (i.e., the
buyer pays as much as they expect to gain). For each run of GBM, you can compute the average price
over time S as a simple mean of the simulated prices, % Y i_1 Sk. This method should return both the
estimated premium C, and an estimate of the standard deviation of a fair premium.

Estimate a premium for an Asian call option on the S&P 500, where the initial price is Sy = $4500, the
strike price is fixed at K = $4600, and the time period is T = 1 year. The historical annualized rate of
return and volatility for the S&P 500 are about u = 0.08 (i.e., people earn about 8% on their investment
each year), and o = 0.15 (i.e., despite generally positive returns, the stock market can go up and down
quite a bit in any given year—about 15% in a typical year). As before, assume that the calendar year
is divided evenly into 250 trading days. Print the estimated premium C, and the estimated standard
deviation. Do you trust that your simulation is accurate enough to make a reasonable prediction? Why
or why not? Would you literally bet money on it? (You're at least betting your grade on it!)
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